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ABSTRACT

Modern approaches for fast retrieval of similar vectors on billion-
scaled datasets rely on compressed-domain approaches such as
binary sketches or product quantization. These methods minimize
a certain loss, typically the Mean Squared Error or other objective
functions tailored to the retrieval problem. In this paper, we re-
interpret popular methods such as binary hashing or product quan-
tizers as auto-encoders, and point out that they implicitly make
suboptimal assumptions on the form of the decoder. We design
backward-compatible decoders that improve the reconstruction
of the vectors from the same codes, which translates to a better
performance in nearest neighbor search. Our method significantly
improves over binary hashing methods and product quantization
on popular benchmarks.
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1 INTRODUCTION

The emergence of large-scale databases raise new challenges, one
of the most prominent ones being on how to explore efficiently this
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data. Finding similar vectors in large sets is increasingly important
with the emergence of vector embeddings that represent data of
various modalities [7, 22]. Exact nearest-neighbor search in high-
dimensional spaces is intractable [29] because it implies a linear
scanning of the database. This is why researchers and practitioners
have resorted to approximate nearest-neighbors (ANN), trading
some search accuracy against orders of magnitude gains in response
time, and memory consumption. Amongst the techniques widely
adopted in industry [12, 16, 26], quantization-based approaches [21],
like product [14] or additive quantizers [2, 17, 19, 20], estimate
distances based on approximated vector representations.

In this paper, we regard search methods based on compact codes
as auto-encoders, and address the problem of improving the decoder
for a fixed encoder: we assume that the stage that assigns vectors
to codes is fixed, and we examine how to improve decoding if we
tolerate some runtime impact. This setting is especially useful in
situations where (1) we need backward-compatibility on existing
codes, and/or (2) for re-ranking to refine an initial short-list [15].

The motivation behind our method is to overcome the inherent
suboptimality of existing decoders, which typically assume that
there is no residual mutual information between bits or subindices.
Lifting this assumption, we design a decoder that offers a better
estimation of the reproduction value (or centroid) associated with
binary sketches or structured compact codes employed in multi-
codebook quantization. We demonstrate the potential of uncoupling
the encoder and decoder for several effective encoders such as
binary codes [10, 24] or product quantization [14]. Our solution
relies on a simple neural decoding network. On the BigANN [15]
and Deep1M [3] benchmarks, it provides substantial gains w.r.t. the
trade-off between reconstruction and memory budget. Noticeably,
we use a very efficient encoder for index construction and initial
search, like a binary or fast quantizer [1], and use our neural decoder
to re-rank a short-list with high-quality neighbors.

2 PRELIMINARIES

In this section, we first present the quantization methods involved
approximate nearest neighbor search as auto-encoders. We then
discuss popular quantization methods for which our paper proposes
to improve the decoder while keeping the encoder fixed.
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2.1 Quantization techniques for ANN search
Most vector encoding methods for approximate nearest neighbor
search can be interpreted as quantization techniques [11]. A quan-
tizer can be regarded as an auto-encoder of the form

Lo f@ =k ek s g =g(f0)) €eQcRL ()

where the input vector x € R4 is first mapped by an encoder f
into a code k € K. The encoder f implicitly defines a partitioning
of R% into K = |X| disjoint cells Cy, ..., Ck, where Cr = f~1(k).
The decoder reconstructs an approximation g from the code k,
which belongs to the set Q = {qx }xcx of reproduction values. The
encoder-decoder g = g o f is usually referred to as a quantizer [11].

Lloyd’s optimality conditions. Given cells and their corre-
sponding reproduction values g, Lloyd [18] derived two necessary
conditions for a quantizer to be optimal in terms of the average
squared loss. First x must be assigned its closest reproduction value,
which translates to the usual assignment rule to the nearest cen-

troid:
f(x) = argming g IIx - gre 1% @
This condition defines the optimal quantizer for a given set of
reproduction values, whether we can enumerate it or not. Denoting
by p the p.d.f. of the input data, the second condition is that each
reproduction value q; should be the expectation of the vectors
assigned to the same cell as

gk = / p(x)xdx,
x€Cr

2.2 Structured vector quantization

®)

The most general form of vector quantization is when the set of
reproduction values Q = {qi, . .., gk } is unconstrained, such as the
one typically produced by k-means. In the context of coding for
distance estimation, a very large number of centroids (typically,
2128) is required to obtain a sufficient precision. It is not feasible to
run k-means at that scale.

Product Quantization (PQ). In order to learn fine-grained
codebooks, Jégou et al. [14, 25] propose a product quantizer, where
the set of centroids Q is implicitly defined as a Cartesian product
of m codebooks Q = Q; X ... X Q.. Each codebook Q; consists of
K’ centroids defined in R . The assignment is separable over the
m subspaces and produces indexes of the form k = (k1,...,km).
The advantage is that the total number of centroids is (K”)™ with
an assignment step to centroid with an efficient complexity in

O(dK’) = O(dK ” ), where d denotes the vector dimensionality.

Notation PQmxb. We denote by PQmxb a product quantizer
defined by m subquantizers with b-bits subindices. It corresponds
to a compact code of size mxb.

Additive quantizers (AQ)
reproduction values as

generalize this, they define the

- Cm € Qm}, 4

Q={c1+ -+cmlc1 €Qy,..
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where Vi Q; ¢ R4, Similar to product quantization, the indices
are tuples. When not ambiguous, we use notation Q;[k] for the
element indexed by k in Q;. Functions implemented as look-up
tables (LUTs) can be written as:

k1= fi(x)

X —

e =Ykl )
im = fn ) =

There are different forms of additive quantizers, with different
encoder algorithms: the form of their decoders is identical and rely
on LUTs as in Eqn. 4. For instance for a residual quantizer [17]
the assignment is done sequentially, which is fast but does not
guarantee to assign a vector to its closest neighbors. Subsequent
additive quantizers, like the ones by Babenko et al. [2], and Local
Search Quantization (LSQ) [19, 20] by Martinez et al. improve the
trade-off between encoding complexity and reconstruction error.

Optimal centroids for a fixed encoder. Given a set of train-
ing vectors (x;)i=1..n € R4 and their codes ki, ..., kpm, it is possible
to construct an additive decoder (Eqn. 4) that minimizes the #; loss.
Denoting by X € R™ the matrix of training vectors, C € RmMK'xd
the codebook entries, and converting subindices kj, ..., k, into one-
hot vectors stacked in I € {0, 1}”XmK/, the optimal solution [2, 20]
is given by

argming[|X — CI||Z + A||C]I3, (6)

where the first term minimizes the reconstruction error on the
training set. As noted by Martinez et al. [20], this estimation has
numerical stability issues, which is addressed with the regularizer
weighted by A > 0. This minimization is performed component-
wise [2] in closed form and is therefore efficient to obtain.

Distance estimator. At search time, the ANN algorithm es-
timates the distance ||x — y|| or similarity between a query x and
each database vector y based on an imperfect representation of y
or both x and y. When both the query and database vectors are
quantized, it is a Symmetric Distance Comparison (SDC), which
approximates the distance ||x — y||? by the estimator

(7)

The asymmetric distance computation (ADC) [14] estimates dis-
tances as

dspc(x.y) = llg(x) = q@)|*.

dapc(x.y) = |Ix — q(y)||*. 8)

In this case the query vector x is not quantized.

Note that the quantization is a lossy operation: the quality of
neighbors strongly depends on the estimator and of the quantizer.
ADC reduces the quantization noise compared to SDC, which sub-
sequently improves the search quality [14].

Compressed-domain calculation. For both PQ and AQ, the
comparison is performed in the compressed domain, one does not
need to decompress the database vectors explicitly as discussed by
Jégou et al. [14] and [2].
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2.3 Hashing based ANN

Binary codes are quantization techniques that derive from Locality-
Sensitive hashing (LSH) [4, 9, 13]. In this work we focus on bina-
rization, which ensures that a small Hamming distance between bit
vectors implies proximity in the original space for a given metric,
for instance cosine [4]. Binarization maps a vector x to a sequence of
bits (k1, . .., k) using m elementary projections u;: k; = sign(u;'—x).
It is a form of quantization where the reconstruction is possible up
to some scaling constant. If the {u;}; is an orthonormal set, then
the reconstruction on the unit-norm #-hyper-sphere as
1 m k1
=— > kjuj o< [ug,...,um]| ‘|- 9)
%= ; i

leads to the same ranking as the Hamming distance between the
binary k;. Note, we use an explicit reconstruction to compute ADC
for binary vectors.

We consider two training methods for ANN search with binary
codes. The first is Iterative Quantization [10] (ITQ). This simple em-
bedding (learned rotation and sign selection) serves as a baseline in
numerous publications. The second is the catalyzer of Sablayrolles
et al. [24], which produces high-quality binary embeddings with a
neural network. We refer the reader to existing reviews for other
approaches [27, 28].

2.4 Re-ranking methods

Some Locality-Sensitive Hashing algorithms such as E2LSH [6]
rely on a two-stage approach, where (1) a first system selects the
most promising neighbor candidate; (2) which are filtered out by a
re-ranking system exact distance computation. The VA-file [29] is
the ancestor of approximation-based filtering: a first approximation
of the vector leads to select a short-list of neighbor candidates. This
approximation being too crude, a re-ranking stage computes the
exact distance between the query and the exact representation of
the vectors in the short-list. This involves a significant amount
of extra storage for large databases. Some approaches alleviate
this constraint by refining the first-stage approximation with a
secondary compact code [15].

2.5 Architectural considerations

Indexing algorithms heavily depend on the hardware on which
they are run. Compared to other quantization approaches based on
compact codes, binary hashing is less precise but benefits from spe-
cific low-level instructions of modern CPUs, like XOR and popcount
that make the distance computation very fast. Quantization meth-
ods significantly benefit from algorithms running on the GPU [16].
With smaller PQ codebooks, order(s) of magnitude faster distance
comparisons can be obtained by computing ADC distance in regis-
ters [1]. This requires to adopt smaller quantization codebooks. For
instance, K’=16 instead of the more standard setting K’=256 with
product or additive quantization.

3 METHOD

Our proposal improves the decoder given an existing encoder, such
that our decoder can be used in a re-ranking stage to improve the
ranking. There are several advantages to keep a fast encoder in
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Table 1: Encoder-decoder considered in this paper, and pro-
posed decoders that we propose instead for ranking or re-
ranking. Our proposal is to design a stronger decoder for each
binarization or quantization technique: either we compute
the optimal look-up tables (w.r.t. reconstruction), as initially
proposed for additive quantization (AQ), or we train a neural
network decoder (NN).

encoder decoder proposed decoders
ITQ [10] naive AQ,NN
Catalyzer [24] naive AQ, NN
PQ16x4 [1, 14] PQ AQ,NN
PQ8x8 [14] PQ AQ, NN
LSQ++ [20] AQ -

approximate search techniques based on compact codes, noticeably
a faster indexing and large-scale search.

In this section we first introduce the binary and quantization-
based encoders that we focus on. We evidence sub-optimalities
in existing approaches on a simple case with a tractable optimal
decoder. Then we introduce our approach based on a neural network
decoder (denoted NN) illustrated in Figure 1, which we adopt with
any type of encoder.

3.1 Towards stronger decoders & discussion

In Table 1 we give the set of encoders that we consider: we consider
popular and state-of-the-art binarization and quantization methods.
We indicate the usual decoder and provide their standard decoder
in the column “decoder” along with our replacement proposal in
the column “proposed decoder”.

For Product Quantization (denoted PQ) and binary codes, we
consider 64 bits codes for a more direct comparison with the lit-
erature. We denote by PQ8x8 the usual product quantizer defined
by m = 8 subquantizers with 8-bits subindices (i.e., K’ = 256) and by
PQ16x4 a product quantizer such that m =16 and K’ = 16.

3.2 AQ: abetter decoder for PQ/OPQ

Our first proposal is to adopt the Additive Quantization (AQ) de-
coder of Eqn. 6 for PQ, and optimized PQ (OPQ). OPQ is a variant
of PQ where, similar to ITQ, the method applies a learned rota-
tion before the subspace partitioning [8, 23]. The OPQ decoder is
identical to PQ except that it rotates the vector back to compen-
sate for the initial rotation. PQ and OPQ are special cases of AQ.
Adopting an AQ decoder instead of the usual PQ decoder implies
that we consider specific reconstruction LUTs Q; that have d di-
mensions instead of d/m: the reconstruction is a summation with
Eqn. 4 instead of a concatenation. Therefore and in contrast to
existing quantization-based methods, we disentangle the look-up
tables associated with the encoder from the ones associated with
the decoder: we have two sets of look-up tables.

This alleviates the decoding constraint of PQ, where each subindex
only contributes to the reconstruction in its own subspace. Since
the subspace are not totally independent, even after application of a
pre-rotation like OPQ, the AQ decoder improves the reconstruction.



Session 2B: Deep Learning - Methodological Advancements

ENCODER

ICMR 22, June 27-30, 2022, Newark, NJ, USA.

DECODER

Figure 1: Neural net decoder architecture. The encoder is fixed and we train the decoder to minimize the loss ||% — x||> and/or a
triplet loss. The first layer of the decoder has the structure of an additive look-up table (LUTa).
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Figure 2: Trade-off between MSE and encoding time for mul-
tiple quantizers. LSQ++ (8x8) outperforms regular PQ w.r.t.
MSE, but the encoding speed is prohibitively slow. In con-
trast, PQ16x4 allows for a quick encoding but has a poor
reconstruction. We improve the compromises by changing
the decoder for a given encoder (PQ+AQ & PQ+NN).

3.3 Binary codes: LUTs reconstruction

We also propose to adopt the AQ decoder of Eqn. 6 to reconstruct
binary codes. While the decoding procedure is conceptually identi-
cal to the case of PQ and OPQ, in this binary context this choice
departs significantly from the current practice in the literature,
where there is usually no reconstruction procedure associated with
the binarization, or only a simplistic one.

In our case, for a m-dimensional bit vector, we learn m LUTs of
size d x 2. Each LUT is indexed by a bit value k; as Q;[k;]. To our
knowledge it is the first time that the AQ (strong) decoder is pro-
posed for binarization techniques. It is advantageously combined
with ADC to avoid any approximation on the query. As we will see,
it provides a significant improvement without extra memory and
at a negligible compute-cost when used for re-ranking. The only
requirement compared to usual binary codes is that the comparison
is not context-free: we need to store the lookup tables Q; to enable
the comparison between a query and a vector, in contrast to the
context-free Hamming distance comparison.

This stronger decoder for binary code is backward-compatible in
the sens that it can be applied for an existing index of binary codes,
with the following requirement: one needs a training set of vectors
and corresponding binary codes, which are required to learn the
LUTs with Eqn 6.
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3.4 Discussion

AQ is the best possible decoder with linear reconstruction as in
Eqn. 4. In the literature, different AQ methods differ by how the
encoding is performed, which impacts the trade-off between speed
and encoding time. However, those offering the best trade-offs
like LSQ++ are computationally intensive. In Figure 2 we plot the
compromise between encoding time and mean squared error (MSE).

LSQ++ vs PQ8x8. The LSQ++ encoder (m = 8, K’ = 256) is
2 orders of magnitude slower than its PQ8x8 counterpart. It is
also significantly better than PQ. However, with our PQ+AQ, that
combines an AQ decoder with a PQ encoder, the gap is reduced
significantly. This advocates the choice of a faster encoder.

PQ8x8 vs PQ16x4. The relatively poor reconstruction accu-
racy associated with a PQ16x4 decoder, when using the correspond-
ing naive decoder, is significantly improved with AQ decoding: it
even outperforms PQ8%8 while being one order of magnitude faster,
due to the much lower number of centroids per subquantizers (16
versus 256). A key advantage of PQ16X4 is a strong architectural
advantage at search time: The look-up table Q; can be stored in the
process registries [1], leading to an even larger gap in efficiency.
Our proposal to leverage such efficient implementation makes this
parameter an appealing choice.

3.5 Neural Network decoder

The AQ decoder significantly improves binary codes or product
quantization encoders. However the reconstruction linearly de-
pends on the separate reconstructions of the components Q;. This
is suboptimal: for instance, binary and PQ reconstruct each sub-
vector independently of the others, implicitly assuming indepen-
dence of the codes P(k) = [12, P(k;). This independence would
be true if the encoding was optimal (there would be no redundant
information between the m sub-vectors), but is not true in prac-
tice (sub-vectors are not independent). We address this problem
by defining a neural network decoder g that, given a compound
index (ki,...,km), produces a reconstruction from the index, as
shown in Figure 1. The first layer is a structured LUT similar to Q
for which we adopt the same notation as PQ: LUTm X b indicates
that the tensor implementing this layer contains m X 2b xd weights.
In our experiments, we use LUT16x4 and LUT8%8 with PQ16x4
and PQ8x8, respectively. For 64-bit binary codes we use LUT64X1.

After the first layer of the decoder (LUT parameters), we stack
one or more blocks. Each block consists of a batch normalization
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Figure 3: Small-scale experiment on the Deep1M dataset: reconstruction error when varying the size of the training set with
16-bit codes. We compare the kmeans baseline with different reconstruction strategies for decoding PQ codes produced by the

same PQ encoder: the regular PQ decoding, the topline for a PQ encoding, and our

decoder based on a neural network.

We report the MSE on the training set (solid) and on the validation set (dashed). For PQ and PQ+NN, we vary the number m and
bits per subspace to keep 16-bit codes: (leff) PQ4x4: m =4, nbits = 4 and (right) PQ2x8.

and two fully connected layers separated by a ReLU activation
function. In the following, we restrict this network to one block, as
we observed empirically that more blocks did not provide signifi-
cant improvements. Note that if the decoder consisted of one LUT
followed by an addition, it would be equivalent to the AQ decoder.

3.6 Triplet loss

We optionally consider the triplet loss as an additional term to
preserve more explicitly the initial ranking in the reconstruction
space, defined as

Lisiplet = max(0, [lx — g = lx = g(x)I5+6).  (10)

In this equation, we consider a query x, a positive match x* in a
given neighborhood (defined by rank) and a negative match x~
selected to be a hard negative. The margin § ensures separation
between positives and negatives and prevents the weights from
collapsing to zero. The overall loss combines the triplet loss and
the reconstruction loss, as:

L= Lrecons +4- Ltriplet (11)

where Lyecons = ||lx — q(x)||? is the reconstruction loss and the
parameter A > 0 controls the trade-off between reconstruction and
ranking quality. We vary the parameter A to identify the optimal
values where we reach the best recall scores. We retain the range
of A values for which we get the best 100 recall@1. For our two test
datasets, a value of A = 1 gives near-optimal results.

4 ANALYSIS: PRELIMINARY EXPERIMENTS

While the objective of this paper is to improve the performance of
indexing techniques based on compact codes, we first evaluate our
proposal to change the decoder on a vanilla quantization task.
The encoder f is the stage that defines the space partitioning.
For a given encoder, the optimal decoder g is known and given
by Eqn. 3: we refer to it as the “topline”. It can be implemented
as a lookup table containing the K d—dimensional centroids. In
practical settings (K > 232) the topline computation is not feasible.
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To circumvent this limitation, we consider a scale where it is feasible
to estimate the optimal quantizer: we set K = 21° for the total
number of centroids, i.e. we consider 16-bit codes.

4.1 Setup of the experiment

At that scale it is possible to run the full k-means quantizer. There-
fore we can compare the following encoders:

e the k-means encoder that groups data points in k = 216 clus-
ters. This is the topline encoder for the training set because
it minimizes the MSE itself;

e PQ2x8 splits vectors into 2 sub-vectors, each encoded in 8
bits. This is a constrained setting of the k-means encoder,
because it is less general;

o PQ4x4 splits vectors into 4 sub-vectors, each encoded in 4
bits. This setting is even more constrained.

For PQ encoders, we compare the decoders:

e the “natural” decoder uses the PQ tables to reconstruct the
vectors, i.e., those used by the PQ encoder;

o the topline decoder uses a K X d size lookup table with the
optimal reconstruction from Equation (3). Note that this
setting is feasible only in a very small scale like here;

e the neural net (NN) decoder reconstructs the vectors with a
small neural net, see Section 3.5.

The k-means encoder can be seen as the product quantizer
PQ1x16. For PQ1x16 the natural” and the topline decoders co-
incide. In addition, the NN decoder of a PQ1x16 also boils down to
a look-up table because all possible inputs of the NN are mapped
into a table.

In Figure 3, we measure the MSE as a function of the number
of training vectors. Note that the linear additive decoder (PQ as
encoder and AQ as decoder) was omitted because AQ is a particular
case of the neural network decoder: the AQ decoder is equivalent
to our NN decoder with just the LUT layer.
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4.2 Training and validation error

In all the settings, when increasing the number of training vectors,
we observe the typical behavior of learning algorithms: for few
training vectors, the MSE on training is much lower than that
on validation vectors (overfitting); for more training vectors, the
two errors become identical. This is because of the generalization
capacity to unseen data of any algorithm trained on more data.
This transition from overfitting to convergence occurs for all
encoder/decoder pairs, but the speed of convergence depends on
the capacity of the encoder and decoder: for “natural” decoders it
is faster for PQ2x8 than for k-means because the latter has more
parameters to train. It is even faster for PQ4x4. On the decoder
front, the topline decoder has the same number of parameters as the
regular k-means, so it is not suprising that both converge as slowly.
The NN decoder is in-between the topline and natural decoders.

4.3 Discussion

The linear additive decoder achieves at best the same performance
as the optimized decoder (PQ as encoder and NN as decoder).

We first compare the “topline” curves with the k-means curves.
This quantifies the suboptimality of the encoder because the k-
means is an optimal encoder and decoder while the topline has a
PQ encoder with an optimal decoder. The difference with the topline
is much higher for PQ4x4, which is a particular case (and more
constrained) of PQ2x8. Then we compare the “topline” with the
“natural” PQ decoder. This shows the contribution of the decoder
only. We observe that the gain due to the encoder is a bit smaller
than that due to the decoder.

By adding an optimized decoder after the encoding step, we
attempt to approach the optimal decoder with a NN that scales
beyond this toyish setup. We observe that the NN decoder has an
asymptotic accuracy close to that of the topline decoder.

Interestingly our PQ+NN decoder, while asymptotically (ntrain—
o0) inferior to the topline, achieves better performance on the vali-
dation set than the topline in the data-starving regime. Our inter-
pretation is that it has to learn fewer parameters and is therefore
better able to generalize with less data.

5 EXPERIMENTS

5.1 Experimental setting

We use publicly available benchmarks to evaluate the performance
of nearest neighbor search techniques, namely BigANN1M [15]
(d = 128) and DEEP1M [3] (d = 96). Both are image features
extracted from real images, arranged in a database of 1M vectors, a
query set of 10.000 queries, and a separate set of training vectors.
We measure the MSE and the Recall@R, i.e. the rate of queries
for which the nearest neighbor is ranked in the first R ranks, for
a code of size 64 bits in all the experiments. Recall@R has the
advantage to be less biased than distance-based evaluation metrics
such as MSE. It is also commonly used to evaluate ANN search
methods in the scientific literature. In addition, when implementing
a "search engine", we use Recall@R because it directly provides
users with the top R results. The measurements are averaged over
5 runs of training with different random seeds. Our NN decoder
minimizes the reconstruction loss with Adam optimizer. We train

172

ICMR 22, June 27-30, 2022, Newark, NJ, USA.

000
—— PQ16x4+NN
=204 - PQ8x8+NN
Q
> 1000
)
o 15+
S
"
g
190
£ 109 Pasxs 1p
ps
o
© 5
2 100
.P016X4 10
0.16 0.18 0.20 0.22 0.24
R@1

Figure 4: Accuracy vs. search time on the BigANN1M dataset
when re-ranking: The NN decoder re-orders the top PQ re-
sults. The isolated points correspond to the baseline, i.e.,
without reranking the short-list. The curves are obtained by
sweeping over the number of top elements to re-rank (2 to
1000).

on 300 epochs with a batch size bs = 256 and a learning rate
Ir = 5-107*. We use a scheduler that reduces the learning rate by a
factor Irgecay = 0.5 when the validation loss stops improving. We
do not regularize with weight decay.

5.2 Results with PQ codes

Table 2 compares the deep decoder with baselines in terms of recall
for PQ/OPQ encodings. The AQ decoder already improves the ac-
curacy with respect to the PQ/OPQ baseline. We obtain the largest
improvement with the neural network (NN) decoder, especially
for PQ16x4 codes. This parameter choice seems of high practical
interest, since it combines a very fast encoder with a competitive
indexing performance.

Re-ranking. We use this approach in a re-ranking setting:
since we have a fast decoder (row with Decoder “PQ") and a slower
but more accurate one (Decoder “NN"), we consider a two-stage
retrieval procedure, where we first filter out at least 99.9% of the
vectors with the fast one.

Figure 4 shows the results of this approach. Most of the accuracy
gain is obtained by re-ranking just the top-10 first-level results.
Therefore the re-ranking time is negligible w.r.t. the initial search
time. The largest gain (3.4 points) is obtained with PQ16x4 codes,
that are also the fastest for the first-level decoder.

5.3 Results on binary codes

Table 3 reports results with binary encoders. We consider two
encoders: ITQ [10] and the catalyzer [24]. We show how the deep
decoder stands amongst popular baselines in term of reconstruction
error and recall for binary encodings. Recall that for the AQ solver
and the optimized decoder, the lookup table structure is Mxb =
64x1. With binary codes, an asymmetric comparison is the element
that provides the most significant boost in accuracy, which is shown
by the comparison between SDC and ADC.

Our approach ITQ+NN provides an additional gain compared
with the ITQ encoder. For the stronger encoder (catalyzer), our
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Table 2: Retrieval results on BigANN1M and Deep1M with PQ/OPQ 64-bit quantization and ADC comparisons. The LSQ++
results are a topline, very slow at encoding time. All results are computed with ADC. The OPQ (en/de)coder is identical to PQ

(en/de)coder up to a learned rotation. The methods introduced in this paper are shaded.

| 16x4 8x8
Encoder Decoder | R@1 R@10 R@100 | R@1 R@10 R@100
BigANN1M
PQ PQ 0.168 0.530  0.887 | 0.223 0.651  0.948
PQ AQ 0.182 0.564  0.908 | 0.234 0.667  0.955
PQ NN 0.202 0.606  0.928 | 0.239 0.681  0.958
OPQ OPQ 0.194 0.605  0.937 | 0.231 0.667 0.960
OPQ NN 0.202 0.621 0.945 | 0.225 0.665  0.959
LSQ++ AQ | 0.309 0.785 0.987
DeeplM
PQ PQ 0.087 0.324  0.703 | 0.091 0339  0.730
PQ AQ 0.083 0313  0.670 | 0.094 0355  0.749
PQ NN 0.100 0.370  0.756 | 0.105 0.380  0.776
OPQ OPQ 0.151 0.493  0.872 | 0.167 0538  0.898
OPQ NN 0.154 0.516 0.889 | 0.168 0.550  0.908
LSQ++ AQ | | 0.246 0.688  0.965

approach catalyzer+NN provides a significant improvement on the
Deep1M dataset, in particular when adding a triplet loss to make
our training more consistent with the one of the catalyzer. However
we point that on BigANN1M, our simpler choice of using AQ as a
decoder is the best. This may be due to the optimization because
formally, the AQ decoder is a particular case of the NN decoder.

5.4 Other limiting factors

For most applications there is a single limiting factor. In this paper
we mainly fix the code size and evaluate the encoding accuracy
vs. speed tradeoff. However, there are other resource constraints
that can become limiting. Concerning the memory requirement of
storing the codes of the look-up tables itself, the neural network
approach is less parsimonious than fixed (binary) quantizers that
don’t need to store centroids in lookup tables. The parameters of a
neural network decoder exceed that of a linear additive quantizer
because they store LUTs, and also the trained network parameters.
Note that the memory usage for the codec is rarely a limiting factor
because it is constant w.r.t. the amount of data to process.

The optimized decoder added to a fixed PQ encoder is always
the optimal solution in term of accuracy given a fixed encoding
time. Note that the NN decoder training time is not a problem in
this context: it is several orders of magnitude faster than training
image classification networks and can easily be done on CPU.

5.5 Sensitivity to decoder parameters

We analyse the sensitivity of our neural network decoder to vari-
ations of the hyper-parameters. We run two analyses: one on the
network architecture and the other on the parameters in the de-
coder training process. In our analysis, all results have been run on
the BigANN1M dataset, with a training set of 500000 points and a
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validation set of 100000 points. The inputs of the network are codes
returned by a PQ16x4 encoder.

Architecture. The parameters we consider for the network
architecture are the type of blocks (linear or residual), the number
of blocks, the number of neurons in the hidden layers, and the
dropout rate. In our case, a residual architecture doesn’t signifi-
cantly improve the performance of the decoder, probably because
the depth of the network is low (only 1 to 3 blocks). We observe
on Figure 5a that a linear network with only 2 blocks already out-
performs AQ decoders and adding more blocks shows down the
inference without adding much more accuracy.

Whatever the number of neurons in the hidden layers, the learn-
ing process of the decoder is stable but we reach smaller loss values
with more hidden neurons. We experimented with dropout but it
did not improve the validation accuracy significantly.

Optimization. The parameters we consider for the decoder
optimization are the optimizer, the learning rate, the learning decay
factor, the weight decay factor, and the batch size. We compare four
optimizers that are commonly used in deep learning: SGD, Adam,
Adadelta and RMSprop. We vary the learning rate from 5 - 1073 to
5107 to assess their stability. We observe that all networks have
a stable learning process and achieve their best accuracy scores
for different range of learning rates. We choose Adam optimizer
because it is more locally stable and was shown to be faster and
more stable than SGD when fine-tuned [5].

Having chosen Adam as the optimizer, we vary more precisely
the learning rates. Figure 5b shows that both training and validation
losses smoothly decrease and that the decoder is stable with regards
to variations of the learning rate. We recommend to use learning
rates greater than 5 - 1074, They reach a better accuracy than the
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Table 3: Performance of different binary quantizers (64 bits), on Deep1M and BigANN1M, with ITQ encoding or the neural
network encoder of [24]. SDC refers to the case where we compare codes with Hamming distance, ADC when the database
vector is reconstructed by Eqn. 9. AQ and NN decoders also use an asymmetrical comparison. The row NN/triplet corresponds to
the case where we combine the £ loss with a triplet loss similar to the one used to learn the catalyzer, as discussed in Section 3.6.

The methods introduced in this paper are shaded, see Table 1.

| BigANN1IM Deep1M
Encoder Decoder | R@1 R@10 R@100 | R@1 R@10 R@100
ITQ SDC 0.055 0.220 0538 | 0.056 0.213  0.516
ITQ ADC 0.103 0383  0.783 | 0.100 0.368  0.759
ITQ AQ 0.098 0372 0768 | 0.097 0362  0.753
ITQ NN 0.118 0.427 0.819 | 0.112 0.401  0.790
catalyzer SDC 0.083 0.298 0622 | 0.071 0254  0.558
catalyzer ADC 0.158 0520  0.879 | 0.137 0457  0.830
catalyzer AQ 0.160 0.524 0.881 | 0.139 0459  0.833
catalyzer NN 0.153 0509  0.865 | 0.142 0463  0.834
catalyzer NN/triplet | 0.157  0.519 0.876 | 0.145 0.471  0.841

fixed encoder/decoder PQ in less than 5 epochs. We tested the effect
of learning rate decay: varying the learning rate decay factor from
0.2 to 1 has no significant effect on the learning process. We draw
similar conclusions when varying the weight decay factor from 0
to 0.2. The batch size has no significant influence on the decoder
training. After epoch 40, the optimization reaches the same loss
values whatever the batch size (128, 256, 512 and 1024).

Overall, since the optimization does not appear to be sensitive
to hyperparameters, we select the most lightweight architecture
and the most natural hyperparameters for all our experiments (see
Section 5.1).

6 CONCLUSION

In this paper we have focused on the decoder associated with pop-
ular approximate nearest neighbor search based on compact codes.
Our main proposal is to design stronger decoders for existing en-
coders for approximate search. We have evidenced that decoders
associated with existing methods are suboptimal in terms of recon-
struction given the indices. We have proposed an enhanced decoder
based on a neural network that we use with several types of en-
codings, such as binary hashing method or product quantization.
This optimized decoder improves the accuracy when performing
similarity search, and we do not compromise the efficiency since
the main use-case of our method is to provide a re-ranking stage.
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Figure 5: Training and validation losses during training of the
optimized decoder for different hyperparameters: (a) num-
ber of neurons in hidden layers and (b) learning rates. The
decoder is a linear neural network with 2 blocks, trained with
Adam optimizer on the BigANN1M dataset, with a training
set of 500k points and a validation set of 100k points.
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