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ABSTRACT

Modern approaches for fast retrieval of similar vectors on billion-

scaled datasets rely on compressed-domain approaches such as

binary sketches or product quantization. These methods minimize

a certain loss, typically the Mean Squared Error or other objective

functions tailored to the retrieval problem. In this paper, we re-

interpret popular methods such as binary hashing or product quan-

tizers as auto-encoders, and point out that they implicitly make

suboptimal assumptions on the form of the decoder. We design

backward-compatible decoders that improve the reconstruction

of the vectors from the same codes, which translates to a better

performance in nearest neighbor search. Our method signi�cantly

improves over binary hashing methods and product quantization

on popular benchmarks.

CCS CONCEPTS

• Information systems→ Top-k retrieval in databases; • Com-

puting methodologies → Neural networks.
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1 INTRODUCTION

The emergence of large-scale databases raise new challenges, one

of the most prominent ones being on how to explore e�ciently this
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data. Finding similar vectors in large sets is increasingly important

with the emergence of vector embeddings that represent data of

various modalities [7, 22]. Exact nearest-neighbor search in high-

dimensional spaces is intractable [29] because it implies a linear

scanning of the database. This is why researchers and practitioners

have resorted to approximate nearest-neighbors (ANN), trading

some search accuracy against orders of magnitude gains in response

time, and memory consumption. Amongst the techniques widely

adopted in industry [12, 16, 26], quantization-based approaches [21],

like product [14] or additive quantizers [2, 17, 19, 20], estimate

distances based on approximated vector representations.

In this paper, we regard search methods based on compact codes

as auto-encoders, and address the problem of improving the decoder

for a �xed encoder: we assume that the stage that assigns vectors

to codes is �xed, and we examine how to improve decoding if we

tolerate some runtime impact. This setting is especially useful in

situations where (1) we need backward-compatibility on existing

codes, and/or (2) for re-ranking to re�ne an initial short-list [15].

The motivation behind our method is to overcome the inherent

suboptimality of existing decoders, which typically assume that

there is no residual mutual information between bits or subindices.

Lifting this assumption, we design a decoder that o�ers a better

estimation of the reproduction value (or centroid) associated with

binary sketches or structured compact codes employed in multi-

codebook quantization.We demonstrate the potential of uncoupling

the encoder and decoder for several e�ective encoders such as

binary codes [10, 24] or product quantization [14]. Our solution

relies on a simple neural decoding network. On the BigANN [15]

and Deep1M [3] benchmarks, it provides substantial gains w.r.t. the

trade-o� between reconstruction and memory budget. Noticeably,

we use a very e�cient encoder for index construction and initial

search, like a binary or fast quantizer [1], and use our neural decoder

to re-rank a short-list with high-quality neighbors.

2 PRELIMINARIES

In this section, we �rst present the quantization methods involved

approximate nearest neighbor search as auto-encoders. We then

discuss popular quantization methods for which our paper proposes

to improve the decoder while keeping the encoder �xed.
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2.1 Quantization techniques for ANN search

Most vector encoding methods for approximate nearest neighbor

search can be interpreted as quantization techniques [11]. A quan-

tizer can be regarded as an auto-encoder of the form

G
Ĝ

−−−−→ 5 (G) = : ∈ K
ĝ

−−−→ @ġ = 6(5 (G)) ∈ Q ¢ RĚ , (1)

where the input vector G ∈ RĚ is �rst mapped by an encoder 5

into a code : ∈ K . The encoder 5 implicitly de�nes a partitioning

of RĚ into  = |K | disjoint cells C1, . . . , Cć , where Cġ = 5 −1 (:).
The decoder reconstructs an approximation @ġ from the code : ,

which belongs to the set Q = {@ġ }ġ∈K of reproduction values. The

encoder-decoder @ = 6 ◦ 5 is usually referred to as a quantizer [11].

Lloyd’s optimality conditions. Given cells and their corre-

sponding reproduction values @ġ , Lloyd [18] derived two necessary

conditions for a quantizer to be optimal in terms of the average

squared loss. First G must be assigned its closest reproduction value,

which translates to the usual assignment rule to the nearest cen-

troid:

5 (G) = argminġ′∈K ∥G − @ġ′ ∥2 . (2)

This condition de�nes the optimal quantizer for a given set of

reproduction values, whether we can enumerate it or not. Denoting

by ? the p.d.f. of the input data, the second condition is that each

reproduction value @ġ should be the expectation of the vectors

assigned to the same cell as

@ġ =

∫
Į ∈Cġ

? (G)G3G, (3)

2.2 Structured vector quantization

The most general form of vector quantization is when the set of

reproduction values Q = {@1, . . . , @ć } is unconstrained, such as the

one typically produced by k-means. In the context of coding for

distance estimation, a very large number of centroids (typically,

2128) is required to obtain a su�cient precision. It is not feasible to

run k-means at that scale.

Product Quantization (PQ). In order to learn �ne-grained

codebooks, Jégou et al. [14, 25] propose a product quantizer, where

the set of centroids Q is implicitly de�ned as a Cartesian product

of< codebooks Q = Q1 × ... × Qģ . Each codebook Qğ consists of
 ′ centroids de�ned in R

Ě

ģ . The assignment is separable over the

< subspaces and produces indexes of the form : = (:1, . . . , :ģ).
The advantage is that the total number of centroids is ( ′)ģ with

an assignment step to centroid with an e�cient complexity in

O(3 ′) = O(3 1
ģ ), where 3 denotes the vector dimensionality.

Notation PQm×b. We denote by PQm×b a product quantizer
de�ned by< subquantizers with b-bits subindices. It corresponds

to a compact code of size m×b.

Additive quantizers (AQ) generalize this, they de�ne the

reproduction values as

Q = {21 + · · · + 2ģ |21 ∈ Q1, . . . , 2ģ ∈ Qģ}, (4)

where ∀8 Qğ ¢ RĚ . Similar to product quantization, the indices

are tuples. When not ambiguous, we use notation Qğ [:] for the
element indexed by : in Qğ . Functions implemented as look-up

tables (LUTs) can be written as:

G
Ĝ

−−−−→
©­­
«
:1 = 51 (G)

...

:ģ = 5ģ (G)

ª®®
¬

ĝ
−−−→ 6(5 (G)) =

ģ∑
ğ=1

Qğ [:ğ ] . (5)

There are di�erent forms of additive quantizers, with di�erent

encoder algorithms: the form of their decoders is identical and rely

on LUTs as in Eqn. 4. For instance for a residual quantizer [17]

the assignment is done sequentially, which is fast but does not

guarantee to assign a vector to its closest neighbors. Subsequent

additive quantizers, like the ones by Babenko et al. [2], and Local

Search Quantization (LSQ) [19, 20] by Martinez et al. improve the

trade-o� between encoding complexity and reconstruction error.

Optimal centroids for a �xed encoder. Given a set of train-

ing vectors (Gğ )ğ=1..Ĥ ∈ RĚ and their codes :1, ..., :ģ , it is possible

to construct an additive decoder (Eqn. 4) that minimizes the ℓ2 loss.

Denoting by - ∈ RĤ×Ě the matrix of training vectors, � ∈ Rģć ′×Ě

the codebook entries, and converting subindices :1, ..., :ģ into one-

hot vectors stacked in � ∈ {0, 1}Ĥ×ģć ′
, the optimal solution [2, 20]

is given by

argminÿ ∥- −�� ∥22 + _∥� ∥
2
2, (6)

where the �rst term minimizes the reconstruction error on the

training set. As noted by Martinez et al. [20], this estimation has

numerical stability issues, which is addressed with the regularizer

weighted by _ > 0. This minimization is performed component-

wise [2] in closed form and is therefore e�cient to obtain.

Distance estimator. At search time, the ANN algorithm es-

timates the distance ∥G − ~∥ or similarity between a query G and

each database vector ~ based on an imperfect representation of ~

or both G and ~. When both the query and database vectors are

quantized, it is a Symmetric Distance Comparison (SDC), which

approximates the distance ∥G − ~∥2 by the estimator

3SDC (G,~) = ∥@(G) − @(~)∥2 . (7)

The asymmetric distance computation (ADC) [14] estimates dis-

tances as

3ADC (G,~) = ∥G − @(~)∥2 . (8)

In this case the query vector G is not quantized.

Note that the quantization is a lossy operation: the quality of

neighbors strongly depends on the estimator and of the quantizer.

ADC reduces the quantization noise compared to SDC, which sub-

sequently improves the search quality [14].

Compressed-domain calculation. For both PQ and AQ, the

comparison is performed in the compressed domain, one does not

need to decompress the database vectors explicitly as discussed by

Jégou et al. [14] and [2].
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2.3 Hashing based ANN

Binary codes are quantization techniques that derive from Locality-

Sensitive hashing (LSH) [4, 9, 13]. In this work we focus on bina-

rization, which ensures that a small Hamming distance between bit

vectors implies proximity in the original space for a given metric,

for instance cosine [4]. Binarizationmaps a vector G to a sequence of

bits (:1, . . . , :ģ) using< elementary projectionsDğ ::ğ = sign(D¦ğ G).
It is a form of quantization where the reconstruction is possible up

to some scaling constant. If the {Dğ }ğ is an orthonormal set, then

the reconstruction on the unit-norm ℓ2-hyper-sphere as

@ġ =

1
√
3

ģ∑
ğ=1

:ğDğ ∝ [D1, . . . , Dģ]

:1
.
.
.

:ģ


. (9)

leads to the same ranking as the Hamming distance between the

binary :ğ . Note, we use an explicit reconstruction to compute ADC

for binary vectors.

We consider two training methods for ANN search with binary

codes. The �rst is Iterative Quantization [10] (ITQ). This simple em-

bedding (learned rotation and sign selection) serves as a baseline in

numerous publications. The second is the catalyzer of Sablayrolles

et al. [24], which produces high-quality binary embeddings with a

neural network. We refer the reader to existing reviews for other

approaches [27, 28].

2.4 Re-ranking methods

Some Locality-Sensitive Hashing algorithms such as E2LSH [6]

rely on a two-stage approach, where (1) a �rst system selects the

most promising neighbor candidate; (2) which are �ltered out by a

re-ranking system exact distance computation. The VA-�le [29] is

the ancestor of approximation-based �ltering: a �rst approximation

of the vector leads to select a short-list of neighbor candidates. This

approximation being too crude, a re-ranking stage computes the

exact distance between the query and the exact representation of

the vectors in the short-list. This involves a signi�cant amount

of extra storage for large databases. Some approaches alleviate

this constraint by re�ning the �rst-stage approximation with a

secondary compact code [15].

2.5 Architectural considerations

Indexing algorithms heavily depend on the hardware on which

they are run. Compared to other quantization approaches based on

compact codes, binary hashing is less precise but bene�ts from spe-

ci�c low-level instructions of modern CPUs, like XOR and popcount

that make the distance computation very fast. Quantization meth-

ods signi�cantly bene�t from algorithms running on the GPU [16].

With smaller PQ codebooks, order(s) of magnitude faster distance

comparisons can be obtained by computing ADC distance in regis-

ters [1]. This requires to adopt smaller quantization codebooks. For

instance, K’=16 instead of the more standard setting K’=256 with

product or additive quantization.

3 METHOD

Our proposal improves the decoder given an existing encoder, such

that our decoder can be used in a re-ranking stage to improve the

ranking. There are several advantages to keep a fast encoder in

Table 1: Encoder-decoder considered in this paper, and pro-

posed decoders that we propose instead for ranking or re-

ranking. Our proposal is to design a stronger decoder for each

binarization or quantization technique: either we compute

the optimal look-up tables (w.r.t. reconstruction), as initially

proposed for additive quantization (AQ), or we train a neural

network decoder (NN).

encoder decoder proposed decoders

ITQ [10] naive AQ, NN

Catalyzer [24] naive AQ, NN

PQ16×4 [1, 14] PQ AQ, NN

PQ8×8 [14] PQ AQ, NN

LSQ++ [20] AQ –

approximate search techniques based on compact codes, noticeably

a faster indexing and large-scale search.

In this section we �rst introduce the binary and quantization-

based encoders that we focus on. We evidence sub-optimalities

in existing approaches on a simple case with a tractable optimal

decoder. Thenwe introduce our approach based on a neural network

decoder (denoted NN) illustrated in Figure 1, which we adopt with

any type of encoder.

3.1 Towards stronger decoders & discussion

In Table 1 we give the set of encoders that we consider: we consider

popular and state-of-the-art binarization and quantization methods.

We indicate the usual decoder and provide their standard decoder

in the column “decoder” along with our replacement proposal in

the column “proposed decoder”.

For Product Quantization (denoted PQ) and binary codes, we

consider 64 bits codes for a more direct comparison with the lit-

erature. We denote by PQ8×8 the usual product quantizer de�ned
by< = 8 subquantizers with 8-bits subindices (i.e.,  ′ = 256) and by

PQ16×4 a product quantizer such that< = 16 and  ′ = 16.

3.2 AQ: a better decoder for PQ/OPQ

Our �rst proposal is to adopt the Additive Quantization (AQ) de-

coder of Eqn. 6 for PQ, and optimized PQ (OPQ). OPQ is a variant

of PQ where, similar to ITQ, the method applies a learned rota-

tion before the subspace partitioning [8, 23]. The OPQ decoder is

identical to PQ except that it rotates the vector back to compen-

sate for the initial rotation. PQ and OPQ are special cases of AQ.

Adopting an AQ decoder instead of the usual PQ decoder implies

that we consider speci�c reconstruction LUTs Q ′
ğ that have 3 di-

mensions instead of 3/<: the reconstruction is a summation with

Eqn. 4 instead of a concatenation. Therefore and in contrast to

existing quantization-based methods, we disentangle the look-up

tables associated with the encoder from the ones associated with

the decoder: we have two sets of look-up tables.

This alleviates the decoding constraint of PQ,where each subindex

only contributes to the reconstruction in its own subspace. Since

the subspace are not totally independent, even after application of a

pre-rotation like OPQ, the AQ decoder improves the reconstruction.
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Table 2: Retrieval results on BigANN1M and Deep1M with PQ/OPQ 64-bit quantization and ADC comparisons. The LSQ++

results are a topline, very slow at encoding time. All results are computed with ADC. The OPQ (en/de)coder is identical to PQ

(en/de)coder up to a learned rotation. The methods introduced in this paper are shaded.

16×4 8×8
Encoder Decoder R@1 R@10 R@100 R@1 R@10 R@100

BigANN1M

PQ PQ 0.168 0.530 0.887 0.223 0.651 0.948

PQ AQ 0.182 0.564 0.908 0.234 0.667 0.955

PQ NN 0.202 0.606 0.928 0.239 0.681 0.958

OPQ OPQ 0.194 0.605 0.937 0.231 0.667 0.960

OPQ NN 0.202 0.621 0.945 0.225 0.665 0.959

LSQ++ AQ 0.309 0.785 0.987

Deep1M

PQ PQ 0.087 0.324 0.703 0.091 0.339 0.730

PQ AQ 0.083 0.313 0.670 0.094 0.355 0.749

PQ NN 0.100 0.370 0.756 0.105 0.380 0.776

OPQ OPQ 0.151 0.493 0.872 0.167 0.538 0.898

OPQ NN 0.154 0.516 0.889 0.168 0.550 0.908

LSQ++ AQ 0.246 0.688 0.965

approach catalyzer+NN provides a signi�cant improvement on the

Deep1M dataset, in particular when adding a triplet loss to make

our training more consistent with the one of the catalyzer. However

we point that on BigANN1M, our simpler choice of using AQ as a

decoder is the best. This may be due to the optimization because

formally, the AQ decoder is a particular case of the NN decoder.

5.4 Other limiting factors

For most applications there is a single limiting factor. In this paper

we mainly �x the code size and evaluate the encoding accuracy

vs. speed tradeo�. However, there are other resource constraints

that can become limiting. Concerning the memory requirement of

storing the codes of the look-up tables itself, the neural network

approach is less parsimonious than �xed (binary) quantizers that

don’t need to store centroids in lookup tables. The parameters of a

neural network decoder exceed that of a linear additive quantizer

because they store LUTs, and also the trained network parameters.

Note that the memory usage for the codec is rarely a limiting factor

because it is constant w.r.t. the amount of data to process.

The optimized decoder added to a �xed PQ encoder is always

the optimal solution in term of accuracy given a �xed encoding

time. Note that the NN decoder training time is not a problem in

this context: it is several orders of magnitude faster than training

image classi�cation networks and can easily be done on CPU.

5.5 Sensitivity to decoder parameters

We analyse the sensitivity of our neural network decoder to vari-

ations of the hyper-parameters. We run two analyses: one on the

network architecture and the other on the parameters in the de-

coder training process. In our analysis, all results have been run on

the BigANN1M dataset, with a training set of 500000 points and a

validation set of 100000 points. The inputs of the network are codes

returned by a PQ16×4 encoder.

Architecture. The parameters we consider for the network

architecture are the type of blocks (linear or residual), the number

of blocks, the number of neurons in the hidden layers, and the

dropout rate. In our case, a residual architecture doesn’t signi�-

cantly improve the performance of the decoder, probably because

the depth of the network is low (only 1 to 3 blocks). We observe

on Figure 5a that a linear network with only 2 blocks already out-

performs AQ decoders and adding more blocks shows down the

inference without adding much more accuracy.

Whatever the number of neurons in the hidden layers, the learn-

ing process of the decoder is stable but we reach smaller loss values

with more hidden neurons. We experimented with dropout but it

did not improve the validation accuracy signi�cantly.

Optimization. The parameters we consider for the decoder

optimization are the optimizer, the learning rate, the learning decay

factor, the weight decay factor, and the batch size. We compare four

optimizers that are commonly used in deep learning: SGD, Adam,

Adadelta and RMSprop. We vary the learning rate from 5 · 10−3 to
5 · 10−5 to assess their stability. We observe that all networks have

a stable learning process and achieve their best accuracy scores

for di�erent range of learning rates. We choose Adam optimizer

because it is more locally stable and was shown to be faster and

more stable than SGD when �ne-tuned [5].

Having chosen Adam as the optimizer, we vary more precisely

the learning rates. Figure 5b shows that both training and validation

losses smoothly decrease and that the decoder is stable with regards

to variations of the learning rate. We recommend to use learning

rates greater than 5 · 10−4. They reach a better accuracy than the
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